tangrams

Dr. Constanze Schadl

Research assistant at the Department of Education at the Faculty for Mathematics and Computer Science​
tangrams
Image: C. Schadl

Curriculum Vitae

  • Since 2024
    Research Scientist
    Chair of Mathematics Education, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
  • Since 2023
    Participation in Emmy-Noether-mentoring program
  • September 2023 – February 2024 
    Mathematics teacher, Munich
  • 2023
    Deputy professorship for mathematics and mathematics education, Ludwigsburg University of Education 
  • 2022 – 2024
    Representation of women’s representative, University of Jena 
  • 2021 – 2023
    Participation in mentoring program for postdocs (university association Halle-Jena-Leipzig)
  • 2020 – 2024
    Research scientist 
    Department of Education at the Faculty of Mathematics and Computer Science, University of Jena                    
  • 2020
    Dr. rer. nat. in mathematics education
    Thesis: Individual prerequisites for the acquisition of fraction concept. Structural analysis and analysis of longitudinal predictability.
  • 2019 – 2020
    Participation in LMU mentoring program
  • 2018 – 2020
    Representation of women’s representative 
    Faculty of mathematics, computer science and statistics, LMU Munich
  • 2016 – 2020    
    Research scientist and doctoral student
    Department of mathematics education, LMU Munich
  • 2016
    Second state examination for upper level secondary school teachers
    First state examination: counseling teacher certification
  • 2014
    First state examination for upper level secondary school teachers
    LMU Munich, subjects: Mathematics and Psychology

Research interests

Primary and secondary level

  • Individual prerequisites for the acquisition of fraction concept (e.g., proportional reasoning, SFoN-tendency, SFoR-tendency, number line tasks)
  • Fraction learning
  • Digital curriculum-based measurement in mathematics (formative assessment)

Tertiary level

  • Transition from school to university and from university to school (development of „Schnittstellenaufgaben“ and of digital learning materials)

Publications

Monograph

Schadl, C. (2020). Individuelle Lernvoraussetzungen für den Erwerb des Bruchzahlkonzepts. Struk­turanalysen und Untersuchung der längsschnittlichen Prädiktivität. Münster: Waxmann. http://www.waxmann.com/buch4292External link

Articles in Journals (with review)

Schadl, C. & Ufer, S. (2023). Beyond linearity: Using IRT-scaled level models to describe the relation between prior proportional reasoning skills and fraction learning outcomes. Child Development, 94(6), 1642-1658. https://doi.org/10.1111/cdev.13954External link 

Schadl, C. & Ufer, S. (2023, online first). Mathematical knowledge and skills as longitudinal predictors of fraction learning among sixth grade students. Journal of Educational Psychology. https://dx.doi.org/10.1037/edu0000808External link

Hoth, J. & Schadl, C. (under revision). Dealing with lengths in primary mathematics education - levels of a length concept.

Schadl, C. & Lindmeier, A. (under revision). Preparing for digital monitoring of learning in the context of fractions: Development and piloting of two tests for the assessment of prior knowledge according to content-specific learning models.

Schadl, C. & Lindmeier, A. (under revision). Searching for efficient and informative tests for digital learning monitoring when combining curriculum-based measurement and learning trajectories-based assessments in the fraction context: Digital tests for fraction subconstructs knowledge and informal fraction knowledge on the test bench.

Schadl, C. & Ufer, S. (under review). Who struggles with which demand? Using level models to understand interindividual differences in and relations between facets of fraction knowledge.

Schadl, C. & Ufer, S. (in prep.). Modeling predictive relations in the fraction context: Which students' profiles of prior mathematics performance will likely succeed with later fraction learning?

Articles in Conference Proceedings (with review)

Hoth, J. & Schadl, C. (accepted). Relevant measurement skills to solve word problems with lengths. In Proceedings of the 47th Conference of the International Group for the Psychology of Mathematics Education. PME. 

Hoth, J. & Schadl, C. (accepted). The relevance of benchmark knowledge and measurement skills for students' lenght estimation skills. In Proceedings of the 15th International Congress on Mathematical Education. ICME. 

Schadl, C. & Lindmeier, A. (2022). Modelling proportional reasoning skills in levels within a digital setting. In C. Fernández, S. Llinares, Á. Gutiérrez, & N. Planas (Eds.), Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education (pp. 387-394). PME.

Schadl, C. & Lindmeier, A. (2023). Arithmetische Fähigkeiten in der Sekundarstufe I als Lernvoraussetzung für die Bruchrechnung digital erheben: Auf dem Weg zu effizienten Kurztests für Lernverlaufsmessungen. 10. Jahrestagung der Gesellschaft für empirische Bildungsforschung [GEBF], Essen, Germany. 

Schadl, C. & Lindmeier, A. (2023). Digital monitoring of fraction learning: Adapting a test for knowledge of fraction subconstructs. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel, & M. Tabach (Eds.), Proceedings of the 46th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 155-162). PME.

Articles in Conference Proceedings (without review)

Knorr, L., Schadl, C., & Hoth, J. (2022). Größenvorstellungen zu Längen in der Primarstufe - Welche Facetten sind Teil dieses Konstrukts? Beiträge zum Mathematikunterricht 2022. 

Rachel, A., Schadl, C., & Ufer, S. (2018). Problemorientierte Aufgaben zur Intensivierung des Berufs­feld­bezugs im Lehramtsstudium Mathematik. In Fachgruppe Didaktik der Mathematik der Universi­tät Pader­born (Hrsg.), Beiträge zum Mathematikunterricht (S. 1451 - 1454). Münster: WTM.

Schadl, C. (2020). Individuelle Lernvoraussetzungen für den Erwerb des Bruchzahlkonzepts. Untersu­chung der Prädiktivität und Strukturanalysen. GDM–Mitteilungen, 108, 79-80.

Schadl, C. (2021). Prädiktoren für das Rechnen mit Größen im Bruchrechenkontext. In K. Hein, C. Heil, S. Ruwisch, & S. Prediger (Hrsg.), Beiträge zum Mathematikunterricht 2021. Münster: WTM. 

Schadl, C. & Lindmeier, A. (2022). Digitales Testen am Beispiel des proportionalen Schließens auf dem Prüfstand. Beiträge zum Mathematikunterricht 2022. 

Schadl, C., Rachel, A., & Ufer, S. (2019). Stärkung des Berufsfeldbezugs im Lehramtsstudium Mathe­matik. GDM–Mitteilungen, 107, 47-51.

Schadl, C., & Ufer, S. (2018). Vorwissen für den Erwerb des Bruchkonzepts. Erhebungsinstrumente aus dem Projekt EWIWE. In Fachgruppe Didaktik der Mathematik der Universität Paderborn (Hrsg.), Beiträge zum Mathematikunterricht (S. 1551 - 1554). Münster: WTM.

Schadl, C., & Ufer, S. (2019). Vorwissensprofile für den Erwerb des Bruchzahlkonzepts. Beiträge zum Mathematikunterricht 2019.

Schadl, C., & Ufer, S. (2020). Innovative Modellierungen von bivariaten Zusammenhängen im Bereich der Bruchrechnung. In H.-S. Siller, W. Weigel, & J. F. Wörler (Hrsg.), Beiträge zum Mathematikunterricht 2020 (S. 1229-1232). Münster: WTM.

Poster

Knorr, L., Hoth, J., & Schadl, C. (accepted). The relevance of students' length concept for their skills to convert and deal with length in context situations. ICME 2024, Sydney. 

Rachel, A., Ufer, S., & Schadl, C. (2020). Math.meets.school². Praxisbezogen fachmathematische Arbeitsweisen lernen. GDM 2020, Würzburg. 

Ufer, S., Rachel, A., & Schadl, C. (2016). Lehrerbildung@LMU: reflect@math.lmu und connex­er­cise@math.lmu. Abschlusstagung Lehrerbildung@LMU, München.

Ufer, S., Rachel, A., & Schadl, C. (2018). Lehrerbildung@LMU: reflect@math.lmu und connexer­cise@math.lmu. Abschlusstagung Lehrerbildung@LMU, München.

Ufer, S., Schadl, C., & Rachel, A. (2019). Math.meets.school². Fachmathematische Arbeits­weisen für Studium und Berufspraxis im Lehramt entwickeln. Jahrestreffen Lehrerbil­dung@LMU, München.

Awards

  • 2024     Publication award for postdocs (awarded by the GEBF)

Leading of workshops

  • 2021     CAS (Computer-Algebra-Systems) - An introduction, TU Dresden
  • 2021     Development of CAS tasks (part I), TU Dresden   
  • 2021     Development of CAS tasks (part II), TU Dresden
  • 2020     GeoGebra classic and GeoGebra 3D, L³ TU Munich
  • 2019     GeoGebra classic and GeoGebra 3D, L³ TU Munich
  • 2018     GeoGebra (secondary level)
  • 2017     Relations between mathematical situations and mathematics (primary level)

Further activities

  • Review activities (e.g., for the International Journal of Science and Mathematics Education, Journal für Mathematikdidaktik) 
  • Coordination of the network mdMD de
  • Organization of the conference on "digital teaching and learning of mathematics at school and extracurricular settings"