Relation between pre-service teachers' CAS performance and self-assessments

Hannes Seifert, Anke Lindmeier (Germany)

hannes.seifert@uni-jena.de

DIGITAL COMPETENCE (DC)

For using information and communication technology (ICT) in classrooms, teachers need digital competence which, according to Ferrari (2012), can be (subjectunspecifically) described as a set of:

KNOWLEDGE

Teachers need professional knowledge, e.g., as described by the Technological Pedagogical Content Knowledge framework (TPACK, Mishra & Koehler, 2006).

DESIGN OF THE PILOT STUDY

- X=

"Complete the following tutorial for solving equations with CAS." (TMS)

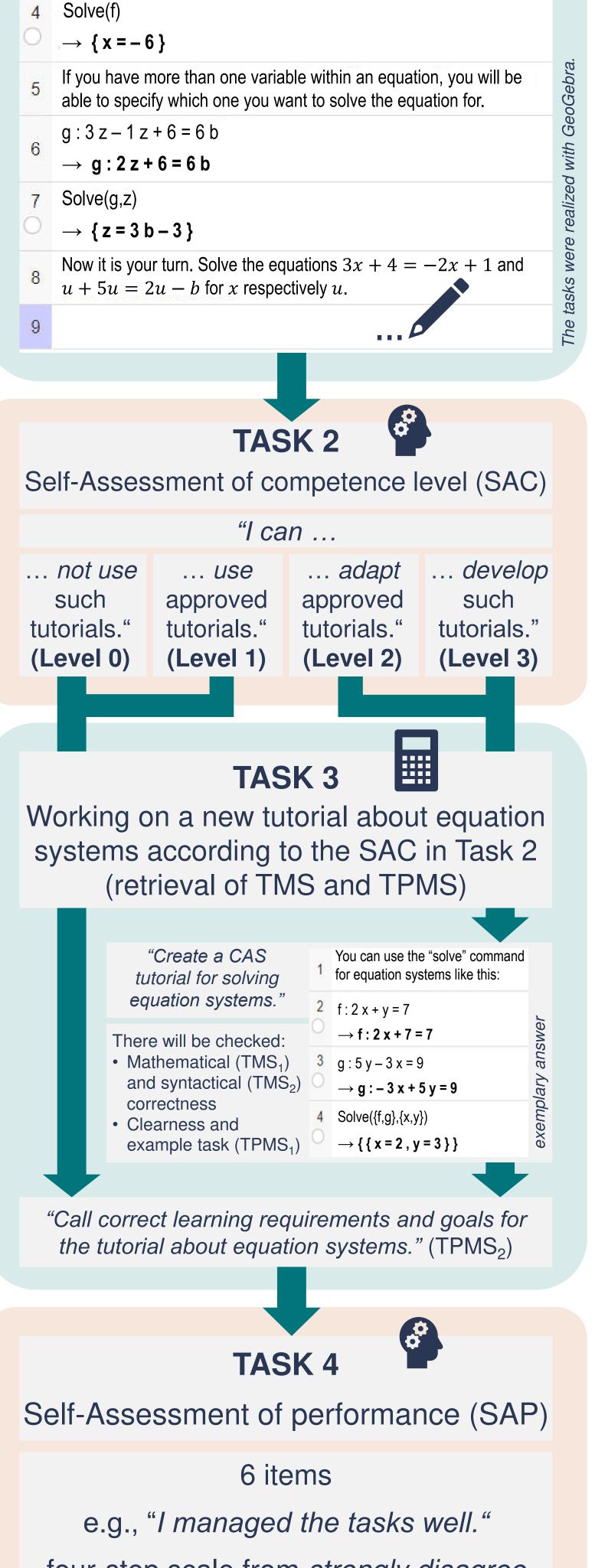
- 1 You can name equations by giving them a label (e.g., f):
- 2 f: 3 (x + 5) x = 3
- \rightarrow f: 2 x + 15 = 3
- Use the "solve" command for calculating all solutions of an equation.

SAMPLE AND PROCEDURES

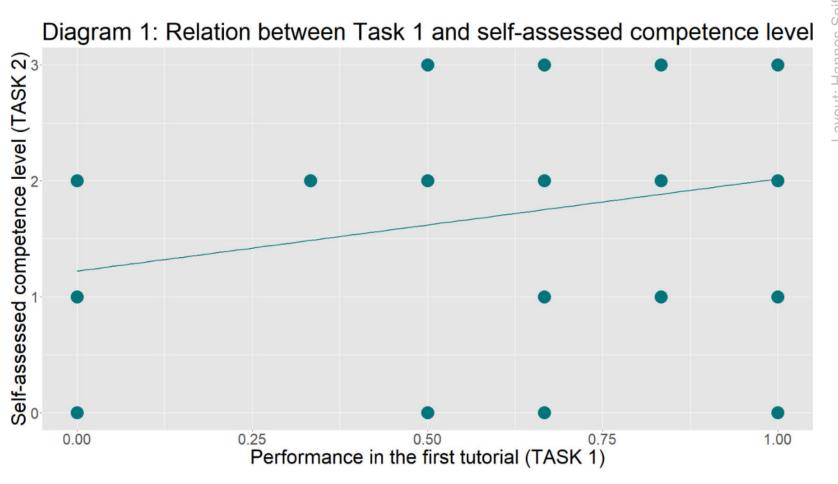
- We worked with N = 50 pre-service teachers (third/fourth Bachelor semester) of the Friedrich Schiller University Jena in 2021 and 2022.
- For scoring the CAS performance (TMS and TPMS), we inductively developed a manual.

RESULTS

SKILLS

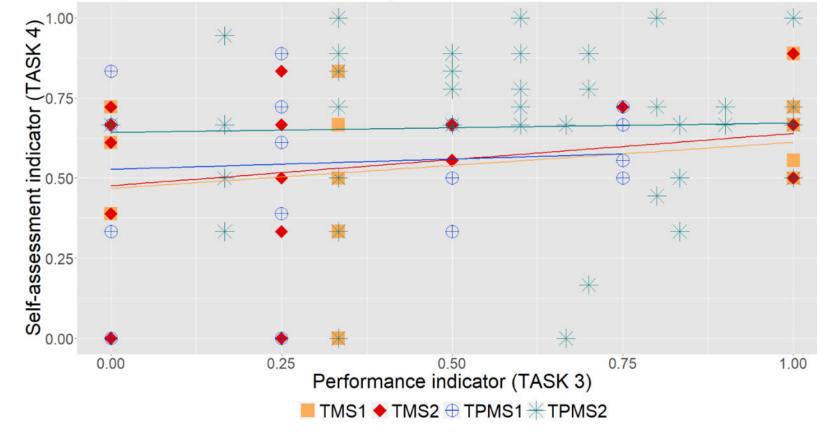

Teachers need to master demands with ICT in a classroom context, e.g., for digital tools the correctly using (Technological Mathematical Skills, TMS) or creating exercises and evaluating solutions (Technological students' Pedagogical Mathematical Skills, TPMS).

ATTITUDES


Teachers have to hold positive attitudes towards ICT, a high self-efficacy, and an open mindset to innovations.

MEASURING DC

 Self-assessments the de-facto are standard for measuring teachers' digital competence. They are prone to biases (e.g., social desirability, Dunning-Kruger effects, Kan et al., 2018).



RQ1: The weak correlation (r = .24, n.s.)between pre-service teachers' performance in the first tutorial (Task 1) and their SAC (Task 2) was not significant. See diagram 1:

RQ2: The correlations between the CASspecific TMS, TPMS (Task 3) and the SAP (Task 4) were zero-to-weak and not significant: TMS₁–SAP: r = .24; TMS₂–SAP: r = .27; TPMS₁–SAP: r = .07; TPMS₂–SAP: r = .03 (all n.s.). See diagram 2:

Diagram 2: Relation between performance and self-assessment

- It is suggested to shift towards *performance assessments*, requiring teachers to work on standardized problems close to practice (Tabach, 2021).
- There is a lack of systematic research on the suitability of self-assessments as indicators, performance especially regarding retrospective self-assessment.

RESEARCH QUESTIONS (RQ)

Are pre-service teachers able to correctly self-assess their performance before (RQ1) and after (RQ2) working with CAS?

To answer RQ1 and RQ2, the pre-service teachers worked on the performance assessments using CAS. Retrieved TMS and TPMS scores were compared with preand post-self-assessment scores.

four-step scale from *strongly disagree* to *strongly agree*, $\alpha = .92$

(see Seifert et al., 2022 for more information)

DISCUSSION AND IMPACTS

- As hypothesized, TMS, TPMS, and selfassessment did not show clear relations, regardless of whether the self-assessment was collected before or after performance.
- Some tendencies might hint at a positive bias of post-self-assessment (Dunning-Kruger effect).

Self-assessments were found to be a poor indicator of prospective teachers' CASspecific digital competence in our study, even when collected directly following a performance task.

References

- Ferrari, A. (2012). Digital Competence in Practice: An Analysis of Frameworks. Luxemburg: Publications Office of the European Union.
- Kan, G., Kaarstein, H., Manizade, A., & Orrill, C. (2018). International Perspectives: Measuring Mathematical Teachers' Knowledge in The Digital Era. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), Proc. 42th Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 1, pp. 197–198). PME.
- Mishra, P., & Koehler, M. (2006). Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. Teachers College *Record, 108*(6), 1017–1054.

• Seifert, H., Ghomi, M., Mühling, A., & Lindmeier, A. (2022). Entwicklung eines Instruments zur Messung digitaler Kompetenzen von Mathematiklehrkräften. In F. Reinhold, & F. Schacht (Eds.), Digitales Lernen in Distanz und Präsenz : Herbsttagung 2021 des Arbeitskreises Mathematikunterricht und digitale Werkzeuge in der Gesellschaft für Didaktik der Mathematik am 24.09.2021 (pp. 117–124). University of Duisburg-Essen. • Tabach, M. (2021). Competencies for Teaching Mathematics in the Digital Era: Are we ready to characterize them? In M. Inprasitha,

N. Changsri, & N. Boonsena (Eds.), *Proc. 44th Conf. of the* Int. Group for the Psychology of Mathematics Education (Vol. 1, pp. 32–47). PME.